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Abstract- In this paper new factorization
techni ques for conputation of the Qperational

Space Mass Matrix (A) and its inverse (A7) are
devel oped. Starting with a new factorization of

the inverse of mass matrix (M-)in the form of

Schur Complement as #™! = € - 8'd™'B, where « and
B are block tridiagonal matrices and € is a
tridiagonal matrix, simlar factorization for A

and A™ are derived. Specifically, the Schur

Conpl ement factorizations of A™' and A are derived
as A =D - g’ e and A = 5 - R'¢'®, where &
and R are sparse matrices and D and § are 6x6
matrices. The Schur Conplenment factorization

provides a unified framework for conputation of

M, A™', and A It also provides a deeper

physical insight as well as sinple physical
interpretations of these factorization.
However, the mmin advantage of these new
factorizations 1s that they are highly efficient
for parallel conputation. Wth QN) processors,

the conputation of A™ and A as well as their
operator applications can be perforned in O(Log N)
steps. This represents both time- and processor-
optimal parallel algorithms for their
conputations. To our know edge, these are the
first parallel algorithns that achieve the tinme
lower bound of O(Leg N) in the conputation,

. Introduction

The conputation of the Operational Space Mass
Matrix (osMM), A, is fundanmental in inplementation
of operational space dynamc control of robot arns
[1]. The dynamic sinulation of closed-chain robot
mani pul ator systens (both single closed-chain
systens and multiple arnms formng a closed-chain
systen) requires the conputation of the inverse of

osMM, A™', and the inverse of mmss matrix, i

In [2] recursive QUN) algorithns for conmputation
of A is developed. Recursive Q'N) algorithns for

conputation of A are developed in [3,4]. Once A
(n™*) 1s conputed then A™ (A) can be obtained by

inverting a 6x6 matrix with a cost of Q), Using
the recursive Q(N) algorithms for the dynanic
sinulation (or, forward dynamcs) of single

open-chain arns [5,6] along with the recursive

Q'N) algorithms for conputation of A or A, the
dynami ¢ sinulation of closed-chain systems can be
then performed with a cost of QUN). These
algorithns represent the asynptotically

optimal serial algorithms for conputation of both
operational space dynamic control and dynamic
simulation of closed-chain systens.

It seems, however, that there is no report on
the devel opment of efficient parallel algorithns

for conputation of A and A™'. A nore general (and
as will be shown a closely related) issue is
regarding the existence of an optimal parallel
algorithm 1.e., an O{(Log N) algorithm with Q(N)
processors, for solution of forward dynamcs of

open-chain arm (or, operator application of M.
Aninvestigation of parallelismin this problem by
analyzing the efficiency of existing algorithns
for parallel conputation 1s reported in [7]. Two
mai n conclusions of this investigation can be
summarized as foll ows.

1. The existing Q(N) algorithms are strictly
sequential, that is, parallelismin their
conputation is bounded. Mre precisely, the min
bottleneck in parallel conputation of Q'N
algorithms is in parallelization of the nonlinear
recurrences for conputation of the articulated-
body inertia, Note that, the recursive QN

algorithnms in [2,3] for conputation of A and A-*
also require the solution of simlar nonlinear
recurrence. This seens to inply that these
algorithnms are also strictly sequential.

2. If there indeed can be such an optimal parallel
algorithm for the problem then it nust be
derivable from an Q'N) serial algorithm Since
existing QN algorithnms are strictly sequential,
the first step in deriving the optimal parallel
algorithmis to develop new serial Q(N) algorithns
with efficiency for parallelization in nmind. Such
Q'N) algorithnms can only be devel oped by a gl obal
refornul ation of the problem and not an al gebraic
transformation in the conputation of existing QN
al gorithns.

From a physical viewpoint, a given algorithm
for the problem can be classified according to its
interbody force deconposition strategy. From the
standpoint of conputation, the algorithm can be
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classified based onthe resulting factorization of
the mass matrix which correspond to the specific
force deconposition strategy (see [8] for a nore
detailed discussion. ) A new algorithm based on a
global reformulation of the problemis then the
one that starts with a different and new force
deconposition strategy and results in a new
factorization of mass matrix.

Interestinggl y, a recently developed iterative
algorithmin [9,10] for open-chain system repre
sents such a global refornulation of the problem
It differs fromthe existing QN algorithnms in
the sense that it is based on a different strategy
for force deconposition. In [8,111, we have shown
that this strategy leads to a new and conpletely

different factorization of #™'in formof Schur
Conpl enent. This factorization, in turn, results
inanew QN) algorithm for the problem which is
strictly efficient for parallel conputation, that
is, it is less efficient than other QN
algorithms for serial conputation but, it can be
parallelized to achieve the tine | ower bound of
QLog N) with Q(N) processors.

In this paper, we show that this factorization

of A-l directly results in a new Schur Conpl erment
factorization for A™ and subsequently for A As
for #™', these factorization provide a nuch deeper
physical insight as well as sinple physical

interpretation of both A" and subsequently for A
They also result in Q'N) algorithms for

conput ati on of A and A as well as their oper at or
applications. These Q(N) algorithm though
seemingly not conpetitive for serial conputation,
can be efficiently parallelized, leading to

Q(Log N parallel algorithms with Q'N) processors.

This paper is organized as follows. In §II
notation and some prelimnaries are presented. The

Schur Conpl ement factorization of A and A are
derived in §III. Serial and parallel conputation

of At and A are discussed in §IV. Finally, sone
concluding remarks are made in §v.

Il. Notation and Prelimnaries
A Spatial and G obal Notation

In the following derivations, we use spatial
notation which, for the sake of clarity, are shown
Wi th upper-case ITALIC letters. Here, only Joints
Wi th one revolute DOF are consi dered. However, all
results can be extended to the systems with Joints
having different and/or nore DOFs.

Wth any vector v, a tensor v can be associated

whose representation in any frame is a skew
symetric matrix:

5 0 Ve Viy)
Vv = -V
Vi © (x)
-V v 0
{y) (x)
where v, ., and v are the conponents of v
(X @) mp

in the frame considered. The tensor v has the

properties that v' = -v and \~"v2 = vy, e, it
is a vector cross-product operator (T denotes the

transpose). A matrix v associated to the vector v
is defined as

=~ JTu v v _ Ju 6x6
V—[o UJandv- E; u R

where here (and throughkthe rest of the paper) U
and O stand for unit and zero matrices of
appropriate size. The spatial velocities of two
rigidly connected points A and B are related as
v =P v

A A,B B

wher e PAB denotes the position vector fromBs to

A. The matrix FA 5 has the properties as

. s . sy .
PA,BPB,C = PA,C and “;.g - PB,A (1)
The spatial forces acting at two rigidly connected
points A and B are related as
F.= PABFA
If the linear and angul ar velocities of point A
are zero then
v =P v
A A BB

In general, the spatial inertia of link i about
point J is denoted by o The spatial inertia of

link i about its center of mass is designated by

Iy ¢, The spatial inertia of body i about point 0,

(designated as ) is obtained as
Ii = SIII Clsl (2)

which represents the parallel axis theorem f or
propagation of spatial inertia.

In our derivations, we also nake use of global
matrices and vectors which lead to a conpact
representation of various factorization. For the
sake of clarity, the global quantities are shown
Wi th upper-case ygR$PI letters. A bidiagonal bl ock
matrix P is defined as

" 1
—PN-I u 0
?=|o0 P u RN
N-2
[0}
0 0 -P1 uj
P is a |ower triangular block matrix given by
u
P U
PN,N-l 0
1 . .
o= Pyn-2 PN-I,N-Z v
N,1 PN—!,I 2,1




B. An Operator Expression of Jacobian Matrix

Following the treatment in [4], a factorization
of Jacobian matrix by using our notation 1s
derived as follows. The velocity propagation for
a serial chain of interconnected rigid body ts
given by (Fig. 1)

2T

Vv - P V
' 1-1 4-1

= HQ (3)

which, by using the matrix ¥, can be expressed in
a global formas

PV = #Q » V = (P1)IHQ (4)
The EE spatial velocity, VM, 1s obtained by
writing Eq. (3) for 1 = N+l as

Vet ;:VN o= VN*I = ﬁ:VN (5)

Let us define a matrix g = [f’l Oo . 0)eR™

From Egs. (4)-(5), we get

v, = BV=B(PHTHQ (6)

The Jacobian matrix 1s defined by relating the EE
spatial velocity and joint velocities as

VNﬂ = 3Q (7)

From Egqs. (6)-(7) a factorization of Jacob. an
matrix 1s then derived as

3= B8P (8)

C. Equations of Mtion

The equations of notion for a single chain arm
are given by

#HO = 9 - b(8,Q,F or (9)

No1)'
H = % » Q = #7F (10)

wher e f}T =9 - b(e.Q.FN”). The vector b(se, Q,FN)

represents the contribution of nonlinear terns and
the external spatial force (Fm) which can be

conputed by using the Newton-Euler (N-E) algorithm
[12] while setting Qto zero. In Eq. (10),

97 & col(F“)cLRNXI represents the acceleration-
dependent conponent of the control force.

In deriving the factorization of mass matrix,
it 1s assumed that the vector b(e.Q.FN”) and

subsequent |y ?T are explicitly conputed. Thus,

the multibody system can be assumed as a system at
rest which upon the application of the control
force S‘T accel erates in space. The propagation of
accelerations and forces among the links of serial
chain are then given by

;o= PT Y ) 11
4 PradVi-e ¥ 1.Q, (1)

= / 12
F =1V +PF (12)

IV. Schur Conpl enent Factorization of At and A
A, The Interbody Force Deconposition Strategy
The iterative algorithms in [9,10] for forward

dynami cs solution of open-chain arnms are based on
a deconposition of interbody force of the form

Fl = HlFTl + wlFSl (13)
wher e Fs‘isthe constraint force and V‘\/is the
orthogonal conpl ement of Hl [13, 14], that is,

wal = 0 and wa‘ =0 (14)

For a joint { with nultiple DOFs, say ni<é6 DOFs,
chRE"‘"’ and wlcR”“”"” Insofar as the axes of

DOFs are orthogonal (which is the case considered
in this paper) the matrix His a proj ection

matrix [13] and hence

H:leu (15
It then follows that the matrix v, ts also a
projection matrix [131, i.e.,

wfw = u (16

T
1

For a nore detailed discussion on these natrices
see [13,141.

HH O+ ux“T = U (17

B. A Schur Conpl ement Factorization of M-

In [8,11], we have shown that the force
deconposition in Eg. (13) leads to a new

factorization of #™' and subsequently a new Q(N)
algorithm for the forward dynam cs of open-chain

arms. W briefly review this factorization of 't
since it is essential in deriving the

factorization of A™' and A

To begin, let us define follow ng gl obal
matrix and vector for i = Nto 1:

6NxSN SN

w g diag(Wl)cR and 95 4 col(FSl)cR

Equations (11)-(12) and (13)-(17) can be now
witten in global form as

P HQ (18)
PF = §V (19)
§ = HE + WF, (20)
Wi = 0 and ®'Ww=0 (21)
## = Uand WV=U (22)
®HT + W= u (23)
FromEgqs. (18), (19), and (21) it follows that

V=3 lpg (24)

WPV = WHY = o (25)



Repl acing Eq. (24) into Eg. (25), we get
wWelsles = o (26)
Substituting Eq. (20) into Eq. (26) vyields
WPTETIP(KE, + WE) = Q or

(27)

SNxN

WT?TS'ITW?Sl = —wT‘PTﬁ“fPH?T > 43 = -BYF
where o & WP PwerR™™ N and B & WP IPHer
are bl ock tridiagonal matrices, From Egs. (27) and
(20) it follows that

g = Ew - w(W’?Ts‘"?W)"wT?’y"?n]?T (28)
and substituting Eq. (28) into Eq. (24) leads to
V= 9"‘?[;{ - w(wTrTs“?w)"W’?Ty“?}(19T (29)

By nmultiplying both sides of Eq. (18) by #' and
using Eq. (22) Qis conputed as

HHY = HPW » Q= #'PY (30)
Finally, fromkgs. (29) and (30) it follows that

Q= [quPTy"w -RT?W‘?W(w%‘s“?wf‘w‘?’s“wl9T
In conparison with Eq. (10), an operator factori-

zation of M-, in terms of its deconposition inte
a set of sinpler operators, is then given by
M- HPTe e - WP ew (WP e W) TR et
Let € & ™79 1P3eR™. 47 i's now expressed as
wl = g- 8748 (31)

€ 1s a tridiagonal matrix. As shown in [15], 4 and
€ are symetric and positive definite (SPD). This

guar ant ees the existence of 4

The operator form of M-lgiven by Eq. (31)
represents an interesting mathematical construct
If a matrix £ is defined as

4 B GNxEN
21 . eRT
B
4

fHe>

t hen
[161. The structure of matrix £, not only provides

a deeper physical insight into the conputation but
it also notivates a different and a nuch sinpler

approach for derivation of the factorizatio,of
#' and its associated Q'N) algorithm (see [8,15]).

C. A Schur Conpl enent Factorization of A™

The new factorization of 4™ directly results
tn a new factorization of the OSMWM and its

inverse. The matrices A and A are defined as [11
Al = gn'sT and A = (gHTIET) TV eR® (32)

- B'4'B is the Schur Complement of « in £

Substituting the factorizations of G givenby Eq.
(g), and M-, given by Eq. (31), into Eq. (32):

1 T,~1

= B(PD) g7t

A #TP s e - 1PN oW (TR e o)
WiPTs ' ey 1"
which can be witten as

Al = @D NPT - g oW (WP ey !
WPt ey g" [33)

The key to sinplification of this expression is

the fact that, from Eq. (23), we have

' = u - oWy (34)

By replacing Eq. (34) into Eq. (33) and after some
i nvol ved a%gebralc mani pul ations, "a sinple

operator expression of A" is derived as
A-l = py gt - B?'l?w(WT?T9'1?W)'1WT?T9'13T (35)
This expression can be further sinplified since

g = plPw =PIV 00 .. 01cR™ (36)

D= g8 = PR (37)
The parallel axis theoremin Eq. (2) can be also
used for propagation of the inverse of spatial
inertias. To this end, by using Egs. (1)-(2),

Eq. (37) can be rewitten as

- 5oy 1y (pTy1yt — (3 AT -1
D= (( PN) IN(PN) ) (PNH NINPM’1 N)
-1

IN,Nol (38)
that is, the matrix D is Just the inverse of
spatial inertia of link N about point O,M.

This factorization of A™' can be written in
formof Schur Conpl ement as
Al - 0. g'ule (39)

Note that the matrix £ is the sane as in Eq. (31).
Let us define a matrix £:

&
P ) CR(sms)x(sms)
2 T E

A' 1s ®en the Schur Conplement of 4 in £,
Simlar to A (xe[8]), the Schur Compl ement

factorization of A and the structure of matrix
22 allows a sinple physical interpretation of this

factorization as well as a sinmpler and direct

approach (without using the factorization of aY
for its derivation [17].

However, it should be enphasized that the

simlarity in the factorizations of M1 and Atis
not limted to their analytical form (i.e., the
Schur Conpl enent form) but it further extends to
their physical interpretation. To see this, et us

rewite Mland A™! as



K= 12T - s ew e s ow) T WP e Pt
A'1 = g3t . T'ew WP o) Ly TpTyt gt

Let us also define a matrix X as

X =91 s ewwTe s o)t wieTs !

#71 and A™' can now be expressed as

M= 12Ty and A7 = gKET

As shown in [17], the matrix X has a sinple

physical interpretation. The fact that 4 and A"
can be both derived from X then allows a unified
and alternate physical interpretation of

factorization of #™* and A™' based on the
physical interpretation of mtrix X.

From a conputational perspective, the advantage
of this structural sinilarity resides in the
inproved efficiency in both serial and parallel
conputation. For the cases (such as the forward
dynam cs of closed-chain systens) wherein the

conputation of both #' and A™' 1s needed, this
structural sinilarity can be exploited to increase
the conputational efficiency.

D. A Schur Conplement Factorization of A

once A s conputed and assuming that its

inverse exists (i.e., A 'isnonsingular), A can
be then obtained by performing a 6x6 matrix

i nversion. However, this corresponds to a
numerical evaluation of A Interestingly, it 1s
possible to derive a factorization of A which
allows its direct conputation without any need for

conputing A-l. It also provides a deeper physical
insight into the structure as well as a sinple
physical interpretation of matrix A

The factorization of A is derived by using the
matrix identity [i18)

(E- xov)' = gt - gixp? - vE 1) ye?
for inverting the matrix a™ given by Eg. (39) as
A= - g4e)y = 97! - pleT(ep e - 276D

= (gy Tyt -

(857 'BI - Iy WP (gmipT)
This inversion, in addition to the nonsingularity

of Al, requires that the matrix €p7'g" - 4 be
nonsingular (note that, D is positive definite and

(897 18T) g w4 WPt (g71g"

hence D™ exists. ) It should be mentioned that .
there are other possible forms of the inverse A"

which only require the nonsingularity of A [18].
These forms and their conputations are extensively
di scussed in [17). The above expression of A can

be further simplified by noting that

= D-l = (];TNAI)—I = IN N+ (40)
9w = {ﬁ;r;‘wN 00. 0] (41)
R' = (97N 'y e [42)
=) B 0 0L L. 0l
- (;’N NduN 00 0l e

9tz ¢! BT(B?-IBT)-Iﬁy-I 9'= Dlag(!" 1

with ™' =0and 11" = -1", i = N1 tol

Let ¥ = w'PTs' ‘oW where ¢ is a symetric block
tridiagonal matrix. ¥ is a rank one nodification
of matrix 4. In fact, ¥ differs from 4 only in the

leading elenent. The factorization of A is then
witten in terns of Schur Conplement as

A=8 - RYIR (43)
[f a matrix £3 is defined as

¥ R
; C(R(S N+6)x (5N+6)
R F

then A is the Schur conplement of ¥ in 23. Agai n,
the structure of matrix 23 allows a sinple

He

4
3

physical interpretation and an alternate direct
approach for derivation of the Schur Conpl ement
factorization of A [171.

IV, Serial and Parallel Conputation of A and A
A O(N) Serial Conputation of A~ and A

The main kernels in conputation of At and A
are the explicit conputation and inversion of
matrices & and ¥. The matrix & and its elenments
are given as

_ T
d= Tridiag [Bl. A‘, Bx-xl
o Teel L AT =13 B
A= wx”x P LG 1-1]w) 1 =Ntol (44)
B = -VI'Pw {=N-1t0 1  (4s)
1 1711

As stated before, the matrix ¢ differs from 4 only
in the leading elenent, i.e., AL which is given

TAT-1 3
W

as A’N = h’rﬁwqpu-: . From Eqs. (44)-(45) the

elements of matrix &4 (and hence ¥) can be conputed
in QN) steps. Efficient conputation of matrix «
by using optinal frame for projection of Egs.
(44) - (45) tisextensivelydi scussed in [8,11,15].

The explicit conputation of A-* from Eg. (39)
can be performed in Q'N) steps as follows. The

conputation of 47'& corresponds to the solution of
system

40 = € (46)

for . This represents the solution of a srD bl ock
tridiagonal system for six right-hand side vectors

which, by using the block LDL"al gorithm {13}, can




be obtained in Q'N) steps,

structure of &', the conput ation of &'a can be
reduced to

Expl oiting the sparse

e=6%0=¢8Q (47)
N N

wher e E;cméxs and QNs:IR‘r’X6 are the Nth el ements of

€' and @. The nultiplication in Eq. (47) can be

performed with a cost of 0(1). A™ can be then
obtained by adding two 6x6 matrices with a cost of
Ql), leading to an Q'N) conplexity for the
overal | conputation.

The computation of A from Eg. (43) can be also
performed in Q(N) steps in a fashion sinmlar to

that of A™'. Note, however, that usually the
operator applications of At and A e,
multiplication of Al by a vector (say V. )

N+1
and nmultiplication of A by a vector (say F_ )-

N+1
rather than their explicit

conputations are
required. In this case, it is significantly more

efficient to directly conpute AV, by first
computing &7, (which involves a sinple matrix-

vector multiplication with a cost of Q1)) and
then solve Eq. (46). The greater conputational
efficiency results fromthe fact that in this case
the solution of Eq. 346) for only one right-hand
side vector is needed.

B. 0(Log N) Parallel Conputation of A™' and A

As can be seen, the conputation of elenents of
matrix d (and hence ¥) is fully decoupled for
{ = N to 1. Thus, by using Q'N) processors, this
conputation as well as required projections can be
performed in Q(1) while involving only nearest
nei ghbor comuni cation anobng processors.

The block LDL"al gorithm while is highly
efficient for serial solution of block tridiagonal
systens, seems to be strictly sequential and, in
fact, there is no report on its parallelization.

However, the Block Cyclic Reduction (BCR}
algorithm [20], while less conpetitive for serial
conputation, can be efficiently parallelized. By

using the BCR algorithm the systemin Eg.
can be solved in o(Log N) steps with Q(N)
processors. The conputation of Eq. (47) and the

final matrix addition for conputation of A™' can
be each performed in Q1) with one processor,
i.e., in a serial fashion. This results in a
conplexity of 0O{Log N) + Q(1) for parallel

(46)

conput ati on of At with QN processors which
indicates a both time- and processor-optimal
parallel algorithm The parallel conputation of A

as wel |l as operator applications of both A and A
can be also conputed in a simlar fashion with a
conpl exity of O(Log N)J+0(1) with Q(N) processors.

It should be enphasized that efficient parallel
solution of block tridiagonal systems is the key
to efficient parallel conputation of Schur

Conpl enent  factorizations of #™', A™' and A
Mbtivated by this fact, we have devel oped a more
efficient variant of the BCR algorithm [21,22]
which 1s particularly suitable for inplementation
on coarse grain MIMD parallel architecture since
it significantly reduces the communication
overhead by providing a high degree of overlapping
between communication and conputation. W have

i npl enented the parallel 0(Log N) algorithm for
conputation of forward dynamcs of a serial chain

by using the Schur Conpl ement factorization of 4!

on a Hypercube architecture [22]. Qur results
clearly validate the efficiency of this variant of
the BCR al gorithmas well as the Schur Conpl ement

factorization of 4™ for practical inplenmentation
on coarse grain MIMD architectures,

V. Discussion and Concl usion
We presented a newfactorization technique for
conput ati on of A" and A. This techni que results

in Schur Conpl enent factorization of both A™ and
A and subsequently a new Q(N) algorithns for their
conputation. These Q(N) algorithms are highly
efficient for parallel computation. To our

know edge, they represent the first algorithms
that can be fully parallelized, resulting

in both tine- and processor-optinal parallel

al gorithns,

The mani fest of Schur Conpl ement in

factorization of ™, A™, and A provides a
unified framework not only for their conputations
but also for their physical interpretations. Such

a physical interpretation for 4 is discussed in
[8,15]. Here, due to the lack of space, we did not
di scuss the physical interpretation for A" and A
This and practical inplenentation of parallel

algorithns for conputation of A’ and A will be
discussed in a forthcomng report.
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